L-arginine deficiency causes airway hyperresponsiveness after the late asthmatic reaction.
نویسندگان
چکیده
Peroxynitrite has been shown to be crucially involved in airway hyperresponsiveness (AHR) after the late asthmatic reaction (LAR). Peroxynitrite production may result from simultaneous synthesis of nitric oxide (NO) and superoxide by inducible NO-synthase (iNOS) at low L-arginine concentrations. L-arginine availability to iNOS is regulated by its cellular uptake, which can be inhibited by eosinophil-derived polycations and by arginase, which competes with iNOS for the common substrate. Using a guinea pig model of allergic asthma, we investigated whether aberrant L-arginine homeostasis could underlie peroxynitrite-mediated AHR after the LAR. After the LAR, arginase activity in the airways and eosinophil peroxidase release from bronchoalveolar lavage cells were increased. These changes were associated with a 2.0-fold AHR to methacholine as measured in isolated perfused tracheal preparations. AHR was reduced by exogenous L-arginine administration. Moreover, both the arginase inhibitor N(omega)-hydroxy-nor-L-arginine (nor-NOHA) and the polycation antagonist heparin normalised airway responsiveness. These effects were reversed by the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME), indicating that both agents reduced AHR by restoring bronchodilating NO production. In conclusion, in allergen-challenged guinea pigs, the AHR after the LAR is caused by arginase- and polycation-induced attenuation of L-arginine availability to iNOS, which may switch the enzyme to simultaneous production of superoxide and NO, and, consequently, peroxynitrite.
منابع مشابه
Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation.
RATIONALE In a guinea pig model of allergic asthma, using perfused tracheal preparations ex vivo, we demonstrated that L-arginine limitation due to increased arginase activity underlies a deficiency of bronchodilating nitric oxide (NO) and airway hyperresponsiveness (AHR) after the allergen-induced early and late asthmatic reaction. OBJECTIVES Using the same animal model, we investigated the ...
متن کاملThe preventive effect of Brassica napus L. oil on pathophysiological changes of respiratory system in experimental asthmatic rat
Objective: Asthma is an airway complex disease defined by reversible airway narrowing and obstruction, chronic airway inflammation, airway hyperresponsiveness, and tissue remodeling. The purpose of this study was to determine the effect of Brassica napus L. (B. napus) on airway pathologic changes in a rat model of asthma. Materials and Methods: Twenty-four rats were divided into 4 groups: contr...
متن کاملRole of L-arginine in the deficiency of nitric oxide and airway hyperreactivity after the allergen-induced early asthmatic reaction in guinea-pigs.
1. Using a guinea-pig model of allergic asthma, we investigated the role of L-arginine limitation in the allergen-induced deficiency of nitric oxide (NO) and airway hyperreactivity (AHR) after the early asthmatic reaction, by examining the effects of various concentrations of the NO synthase (NOS) substrate on the responsiveness to methacholine of isolated perfused tracheae from unchallenged (c...
متن کاملThe late asthmatic response is linked with increased surface tension and reduced surfactant protein B in mice.
Pulmonary surfactant dysfunction may significantly contribute to small airway obstruction during the asthmatic response, but neither its exact role nor its regulation is clear. Surfactant function and composition was studied in an Aspergillus fumigatus (Af)-induced late-phase allergic airway response in sensitized BALB/c mice. The peak of Af-induced airway hyperresponsiveness in sensitized and ...
متن کاملComplement C3a regulates late asthmatic response and airway hyperresponsiveness in mice.
Allergic asthma is a chronic inflammatory disorder of the airways characterized by biphasic airway obstruction and airway hyperresponsiveness. In this study, we attempted to elucidate the contribution of the complement C3a to these asthmatic symptoms. BALB/c mice sensitized by i.p. injections of OVA plus alum were challenged with OVA intratracheally four times. The fourth challenge caused a bip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European respiratory journal
دوره 34 1 شماره
صفحات -
تاریخ انتشار 2009